Notes - Area Models/Geometric Probability

Geometric Probability - The probability of landing in a specific region of a target. It is the ratio of the area of the shaded region to the area of the target.

**When determining geometric probability with targets, we are assuming that...

- ✓ The object lands within the target area.
- ✓ It is equally likely that the object will land anywhere in the region.
- 1. Your friend has an interesting collection of dartboards. If you throw a dart at random and it is guaranteed to hit the dartboard but you only get a point if it hits the shaded region, what is the probability that you will get a point on the dartboard below?
 - a) Determine the area of the entire dartboard. A= 18.18 = 324/n2

18 in.

b) Determine the area of the shaded region.

$$A_0 = \pi r^2$$

3.14.92 = 254.34in²

c) Determine the probability by comparing the area of the shaded region to the area of the entire dartboard. Be sure to convert your probability to a percent.

area of the shaded region area of the entire dartboard
$$=\frac{254.34}{324}=.785=78.5^{\circ}$$

- d) Does your answer seem reasonable? yes.
- 2. During Raleigh's Freedom Balloon Fest, each balloon tries to land in a target zone. The target zone is a square that has a side length of 25 ft. The target zone is in the middle of a rectangular field that is 325 feet by 350 feet. Find the probability that the balloon lands in An = 1. W = 25.25 = 625

a) If the area of the target zone is doubled, how does the probability change?

$$625 \cdot 2 = 1250$$

$$\frac{1250}{113750} = .01098 \approx 1.1^{\circ}/.$$
Increases about .6%

b) If each side of the target zone is doubled, how does the probability change?

25.2 = 50 L. W 113750 50.50 = 2500 = 2.2 1/2

increases 1.7%